Generalized likelihood ratio tests
نویسنده
چکیده
منابع مشابه
An Improved Automatic EEG Signal Segmentation Method based on Generalized Likelihood Ratio
It is often needed to label electroencephalogram (EEG) signals by segments of similar characteristics that are particularly meaningful to clinicians and for assessment by neurophysiologists. Within each segment, the signals are considered statistically stationary, usually with similar characteristics such as amplitude and/or frequency. In order to detect the segments boundaries of a signal, we ...
متن کاملOn Multivariate Likelihood Ratio Ordering among Generalized Order Statistics and their Spacings
The most of the results obtained about stochastic properties of generalized order statistics and their spacings in the literature are based on equal model parameters. In this paper, with less restrictive conditions on the model parameters, we prove some new multivariate likelihood ratio ordering results between two sub-vectors of GOS's as well as two sub-vectors of $p$-spacings based on two con...
متن کاملGeneralized Neyman–Pearson optimality of empirical likelihood for testing parameter hypotheses
This paper studies the Generalized Neyman–Pearson (GNP) optimality of empirical likelihood-based tests for parameter hypotheses. The GNP optimality focuses on the large deviation errors of tests, i.e., the convergence rates of the type I and II error probabilities under fixed alternatives. We derive (i) the GNP optimality of the empirical likelihood criterion (ELC) test against all alternatives...
متن کاملAn Evaluation of an Adaptive Generalized Likelihood Ratio Charts for Monitoring the Process Mean
When the objective is quick detection both small and large shifts in the process mean with normal distribution, the generalized likelihood ratio (GLR) control charts have better performance as compared to other control charts. Only the fixed parameters are used in Reynolds and Lou’s presented charts. According to the studies, using variable parameters, detect process shifts faster than fixed pa...
متن کاملOn the Efficiency of Generalized Likelihood Ratio Tests
The generalized likelihood ratio (GLR) test has been proposed by Fan, Zhang and Zhang (2001) as a generally applicable method to test parametric, semiparametric or nonparametric models against nonparametric alternatives. It is a natural extension of the maximum likelihood ratio test for a parametric model and fully inherits the advantages of classical likelihood ratio tests. Both true likelihoo...
متن کامل